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Abstract

A search is performed for heavy Majorana neutrinos (N) using an event signature
defined by two muons of the same charge and two jets (µ±µ±jj). The data corre-
spond to an integrated luminosity of 19.7 fb−1 of proton-proton collisions at a center-
of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No ex-
cess of events is observed beyond the expected standard model background and up-
per limits are set on |VµN|2 as a function of Majorana neutrino mass mN for masses
in the range of 40–500 GeV, where VµN is the mixing element of the heavy neutrino
with the standard model muon neutrino. The limits obtained are |VµN|2 < 0.00470
for mN = 90 GeV, |VµN|2 < 0.0123 for mN = 200 GeV, and |VµN|2 < 0.583 for
mN = 500 GeV. These results extend considerably the regions excluded by previous
direct searches.
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1 Introduction
The non-zero masses of neutrinos and mixing between flavors have been well established by
neutrino oscillation experiments and provide evidence for physics beyond the standard model
(SM) [1]. The most compelling way of explaining the smallness of the neutrino masses is the
“seesaw” mechanism, which can be realized in several different schemes [2–11]. In the simplest
model, the SM neutrino mass is given by mν ≈ y2

νv2/mN, where yν is a Yukawa coupling of
ν to the Higgs field, v is the Higgs vacuum expectation value in the SM, and mN is the mass
of a new heavy neutrino state (N). In this scheme, N is a Majorana particle (which is its own
antiparticle), so processes that violate lepton number conservation by two units are possible.

In this paper we describe a search for heavy Majorana neutrinos using a phenomenological
approach [12–19]. We follow the studies in Refs. [17–19] and consider a heavy neutrino that
mixes only with the SM muon neutrino, with mN and VµN as free parameters of the model.
Here VµN is a mixing element describing the mixing between the heavy Majorana neutrino and
the SM muon neutrino.

Early direct searches for heavy Majorana neutrinos based on this model were reported by the
L3 [20] and DELPHI [21] experiments at LEP. They searched for Z → νµN decays and set lim-
its on |VµN|2 as a function of mN for Majorana neutrino masses up to approximately 90 GeV.
More recently, the CMS experiment at the CERN LHC extended the search region up to about
200 GeV [22]. Several experiments have obtained limits in the low mass region (mN < 5 GeV),
including LHCb [23] at the LHC. Precision electroweak measurements can be used to constrain
the mixing elements, resulting in indirect 90% confidence level limits of |VµN|2 < 0.0032 in-
dependent of heavy neutrino mass [24]. Other models with heavy neutrinos have also been
examined. ATLAS and CMS at the LHC have reported limits on heavy Majorana neutrino pro-
duction [25, 26] in the context of the Left-Right Symmetric Model. ATLAS have also set limits
based on an effective Lagrangian approach [26].

We report on an updated search for the production of a heavy Majorana neutrino in proton-
proton (pp) collisions at a center-of-mass energy of

√
s = 8 TeV at the LHC with a data set

corresponding to an integrated luminosity of 19.7 fb−1 collected with the CMS detector. We
assume that the heavy Majorana neutrino is produced by s-channel production of a W boson,
which decays via W+ → Nµ+. The N is assumed to be a Majorana particle, so it can decay via
N → W−µ+ with W− → qq′, resulting in a µ+µ+qq′ final state. The charge-conjugate decay
chain also contributes and results in a µ−µ−qq′ final state.

We search for events with two isolated muons of the same sign of electric charge and at least
two accompanying jets. The backgrounds to such dimuon final states originate from SM pro-
cesses that contain isolated prompt same-sign (SS) dimuons in the final state (e.g. WZ produc-
tion), and from processes such as multijet production in which muons from b-quark decays, or
from jets, are misidentified as isolated prompt muons. The misidentified muon background is
more significant for low masses (mN < 90 GeV), while at higher masses the SM prompt dimuon
background becomes more important.

2 Detector, signal simulation, and data selection
The CMS detector is described in detail in Ref. [27]. Its central feature is a superconducting
solenoid, which provides a magnetic field of 3.8 T along the direction of the counterclockwise
rotating beam, taken as the z axis of the detector coordinate system, with the center of the
detector defined to be at z = 0. The azimuthal angle φ is measured in the plane perpendic-
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ular to the z axis, while the polar angle θ is measured with respect to this axis. Within the
superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of
a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded
in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements
the coverage provided by the barrel and endcap detectors. A two-level trigger system selects
the most interesting events for analysis.

Muons are measured in the pseudorapidity range |η| < 2.4, defined as η = − ln[tan(θ/2)],
with detection planes made using three technologies: drift tubes, cathode strip chambers, and
resistive plate chambers. Charged-particle trajectories are measured in a silicon pixel and strip
tracker covering 0 ≤ φ ≤ 2π in azimuth and |η| < 2.5. Matching muons to tracks measured in
the silicon tracker results in a relative transverse momentum resolution for muons with 20 <
pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The pT resolution in
the barrel is better than 10% for muons with pT up to 1 TeV [28].

The heavy Majorana neutrino production and decay process are simulated using the leading-
order (LO) event generator described in Ref. [18] and implemented in ALPGEN v2.14 [29].
The LO cross section at

√
s = 8 TeV for pp → Nµ± → µ±µ±qq′ with |VµN|2 = 1 has a

value of 1515 pb for mN = 40 GeV, dropping to 3.56 pb for mN = 100 GeV, and to 2.15 pb
for mN = 500 GeV [18]. The cross section is proportional to |VµN|2. We scale the leading order
cross section by a factor of 1.34 to account for higher-order corrections, based on the next-
to-next-to-leading-order calculation in Refs. [30, 31] for s-channel W′ production that has the
same production kinematics as the signal. We use the CTEQ6M parton distribution functions
(PDFs) [32]. Parton showering and hadronization are simulated using PYTHIA v6.4.22 [33].
The Monte Carlo (MC) event generator is interfaced with CMS software, where GEANT4 [34]
detector simulation, digitization of simulated electronic signals, and event reconstruction are
performed. To ensure correct simulation of the number of additional interactions per bunch
crossing (pileup), Monte Carlo simulated events are mixed with multiple minimum bias events
with weights chosen using the distribution of the number of reconstructed pp interaction ver-
tices observed in data.

A dimuon trigger is used to select the signal sample. This trigger requires the presence of
one muon reconstructed from matching tracks in the muon system and tracker with transverse
momentum (pT) above 17 GeV and a second muon with pT > 8 GeV formed from a track in
the tracker matched to hits in one of the muon detectors. The trigger efficiency for the signal
sample is measured using Z → µ+µ− events selected in data, and is found to be in the range
85–95%, varying with pT and η.

Additional selections are performed to ensure the presence of well-identified muons and jets.
Events are first required to have a well-reconstructed pp interaction vertex (primary vertex)
identified as the reconstructed vertex with the largest value of ∑ p2

T for its associated charged
tracks reconstructed in the tracking detectors [35].

Leptons, jets, and missing transverse energy (ET/ ) in the event are reconstructed using the stan-
dard CMS particle-flow techniques [36, 37]. The missing transverse momentum vector is de-
fined as the projection on the plane perpendicular to the beams of the negative vector sum
of the momenta of all reconstructed particles in an event. Its magnitude is referred to as ET/ .
Jets are formed from clusters based on the anti-kT algorithm [38], with a distance parameter
of 0.5, and are required to be within the pseudorapidity range |η| < 2.5. Muon candidates
are required to have |η| < 2.4 and to be consistent with originating from the primary vertex.
Muon candidates are reconstructed by matching tracks in the silicon tracker to hits in the outer
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muon system, and are also required to satisfy specific track quality and calorimeter deposition
requirements [28]. Muon candidates must be isolated from other activity in the event, which is
insured by requiring their relative isolation parameter (Irel) to be less than 0.05. Here Irel is de-
fined as the scalar sum of transverse energy present within ∆R =

√
(∆η)2 + (∆φ)2 < 0.3 of the

candidate’s direction, excluding the candidate itself, divided by the muon candidate’s trans-
verse momentum. The muon selection criteria are the same as those used in Ref. [39] except for
the more stringent requirement on Irel used here.

Events are required to contain two same-sign muons, one with pT > 20 GeV and the other with
pT > 15 GeV, and at least two jets with pT > 20 GeV. Events with a third muon are rejected to
suppress diboson events such as WZ. To reduce backgrounds from top-quark decays, events in
which at least one jet is identified as originating from a b quark are rejected, where the medium
working point of the combined secondary vertex tagger [40] has been used.

Further selection requirements are made based on two Majorana neutrino mass search regions.
In the low-mass search region (mN . 80 GeV) the W-boson propagator is on-shell and the
final state system of µ±µ±qq′ should have an invariant mass close to mW. In this region the
following selections are imposed: missing transverse energy <30 GeV; µ±µ±jj invariant mass
<200 GeV, where the two jets chosen are those which result in m(µ±µ±jj) closest to mW; and
dijet invariant mass of these two jets m(jj) < 120 GeV. In the low-mass region the transverse
momenta of the muons and jets are relatively low and the overall efficiency is considerably
smaller than at higher masses. Therefore, the invariant mass requirements in this region are
chosen to be relatively loose.

In the high-mass search region (mN & 80 GeV) the W-boson propagator is off-shell but the W
boson from the N decay is on-shell, so the W→ qq′ decay should result in a dijet invariant mass
close to mW. As the decay particles are more energetic in this region, the following selections
are imposed: missing transverse energy less than 35 GeV (relaxed to increase signal efficiency);
dijet invariant mass 50 < m(jj) < 110 GeV, where the two jets with the invariant mass closest
to mW are chosen. In both the low-mass and high-mass search regions, the upper cutoff on the
missing transverse energy suppresses SM background processes in which a W boson decays
leptonically (W→ µν), including W + jet and tt production.

The low-mass selection gives the best sensitivity for masses below 90 GeV, while for mN ≥
90 GeV the high-mass selection gives the best sensitivity. Therefore, we use the low-mass selec-
tion for 40 < mN < 90 GeV and the high-mass selection for mN ≥ 90 GeV. For masses less than
40 GeV the overall acceptance for the Majorana neutrino signal is less than 1% and we do not
search in this region.

After applying all the selection criteria above, a final selection is applied based on optimizing
the signal significance using a figure of merit [41] defined by εS/(a/2 + δB) with the num-
ber of standard deviations a = 2 and where εS is the signal selection efficiency and δB is the
uncertainty in the estimated background.

At each Majorana neutrino mass point, the optimization is performed by varying the lower
bound of three selections: the transverse momentum pT1 of the highest pT muon (or “leading”
muon), the transverse momentum pT2 of the second muon (or “trailing” muon), and the in-
variant mass m(µ±µ±jj). The two jets used in this optimization are those selected as described
above for the low- and high-mass regions.

The overall signal acceptance includes trigger efficiency, geometrical acceptance, and efficien-
cies of all selection criteria. The overall acceptance for heavy Majorana neutrino events ranges
between 0.69% for mN = 40 GeV to 12% for mN = 500 GeV. The lower acceptance at low mN
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is due to the smaller average pT of the jets and muons in these events. The acceptance dips
when mN approaches mW because the muon pT becomes small. Above the W-boson mass the
acceptance increases again up to 400–500 GeV at which point the boosted decay products of the
Majorana neutrino begin to overlap.

3 Background estimation
There are three potential sources of same-sign dimuon backgrounds: SM sources such as WZ
production, events resulting from misidentified muons, and opposite-sign dimuon events (e.g.
from Z → µ+µ−) in which the charge of one of the muons is mismeasured. The latter source
is found to be negligible for muons with pT in the range of interest for this analysis, based on
MC studies and studies with cosmic ray muons. Estimation of the remaining two sources of
background is discussed below.

An important background source is the irreducible background from SM production of two
genuine isolated muons of the same sign, which can originate from sources such as WZ and
ZZ diboson production, double W-strahlung W±W±qq processes, WH production, ttW pro-
duction, double parton scattering (two qq′ → W), and triboson production. These processes
have relatively small cross sections, and are consequently estimated using MC simulations. We
use PYTHIA to simulate ZZ and WZ production and MADGRAPH v5.1.3.30 [42] for the remain-
ing processes.

The second significant background source originates from events containing objects misiden-
tified as prompt muons. These “prompt muons” originate from b-quark decays or light-quark
or gluon jets. Examples of this background include: multijet production in which two jets are
misidentified as muons; W(→ µν) + jets events in which one of the jets is misidentified as
a muon; and tt decays in which one of the top-quark decays yields a prompt isolated muon
(t → Wb → µνµb), and the other muon of same charge arises from a b-quark decay or a jet
misidentified as an isolated prompt muon. These backgrounds are estimated using control
samples from collision data as described below.

To estimate the misidentified muon background we use the method described in Ref. [22]. An
independent data sample enriched in multijet events is used to calculate the probability for a
jet that passes minimal muon selection requirements (“loose muons”) to also pass the more
stringent requirements used to define muons selected in the heavy Majorana neutrino signal
selection (“tight muons”). This probability is binned in pT and η and is used as a weight in
the calculation of the background in events that pass all the signal selections except that one or
both muons fail the tight criteria, but pass the loose ones.

The sample enriched in multijet production is selected by requiring a loose muon and a jet,
resulting in events that are mostly dijet events with one jet containing a muon. Only one muon
is allowed and upper cutoffs on missing transverse energy (ET/ < 20 GeV) and the transverse
mass (mT < 25 GeV) are applied, where mT is calculated using the muon pT and ET/ . These
requirements suppress contamination from W and Z boson decays. We also require the loose
muon and jet to be separated in azimuth by ∆φ > 2.5. This away-side jet is used as a tag and
the loose muon is a probe used to determine the misidentification probability. The transverse
energy of the tag jet is an essential ingredient to calibrate the characteristics of the probe (loose
muon).

Loose muons are defined by relaxing the identification requirements (used to select signal
events) as follows: the isolation requirement is relaxed from Irel < 0.05 to Irel < 0.4; the trans-
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verse impact parameter of the muon track is relaxed from <0.05 mm to <2 mm; the chi squared
per degree of freedom of the muon track fit is relaxed from 10 to 50.

The overall systematic uncertainty in the misidentified muon background is determined from
the variation of the background estimate with respect to the isolation requirement for the loose
muons and the pT requirement for the tagging jet. Increasing and decreasing the pT require-
ment for the tag jet changes the pT spectrum of the recoiling muon in the event and is found
to have the largest impact on the background level. The misidentified muon rate is compara-
tively stable with respect to variations in loose muon isolation requirements. As a result, the
28% overall systematic uncertainty in the misidentified muon background estimate is domi-
nated by the pT requirement on the tag jet.

We evaluate the method used to estimate the background from misidentified muons by check-
ing the procedure using MC simulated event samples in which the true origin of the muons,
either from W or Z boson decays or from a quark decay, is known. The misidentification prob-
abilities are obtained from multijet events and are used to estimate the misidentified muon
backgrounds in tt, W + jets, and independent multijet events by applying the background es-
timation method described above. The predicted backgrounds agree with the expectations
within the systematic uncertainties.

In addition, to test the validity of the background estimation method, we define two signal-
free control regions in data. We apply the background estimation method in these regions and
compare the result with the observed yields. The control regions in the two mass ranges are
defined as follows. In both the low-mass range (40 < mN < 90 GeV) and the high-mass range
(mN > 90 GeV) the control region is the same as the signal selection, without the final optimized
selections but with either missing transverse energy greater than 50 GeV or one or more jets that
are tagged as originating from a b quark. In the low-mass control region we predict a total back-
ground of 51.4± 1.9 (stat)± 8.3 (syst) events compared to an observed yield of 45 events, while
in the high mass control region we predict a total background of 87.6± 2.5 (stat)± 12.3 (syst)
compared to the observed yield of 81 events. The misidentified muon background accounts for
about 2/3 of the total background in both regions. In both regions the predictions are in agree-
ment with the observations and well within the systematic uncertainty, which is dominated by
the 28% uncertainty in the misidentified muon background. The observed distributions of all
relevant observables also agree with the predictions, within uncertainties.

4 Systematic uncertainties
The main sources of systematic uncertainties are associated with the background estimates. As
described above, the overall systematic uncertainty in the misidentified muon background is
28%. The systematic uncertainties in the normalizations of irreducible SM backgrounds are 12%
for WZ, 9% for ZZ [43], and 22% for W+W− [43]. For the other processes the uncertainty is 25%,
determined by varying the renormalization and factorization scales from the nominal value of
Q2 to 4Q2 and Q2/4, and following the PDF4LHC recommendations [44, 45] to estimate the
uncertainty due to the choice of PDFs. The overall systematic uncertainty in the SM irreducible
background estimate, including those discussed below, is 19%.

Sources of systematic uncertainty associated with the estimates of the heavy Majorana neutrino
signal and of the SM irreducible background are summarized in Table 1. To evaluate the un-
certainty due to imperfect knowledge of the integrated luminosity [46], jet energy scale [47],
jet energy resolution [47], b-tagging [40], muon trigger and selection efficiency, and the cross
section for minimum bias production used in the pileup reweighting procedure in simulation,
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Table 1: Summary of systematic uncertainties in the estimation of the heavy Majorana signal,
SM background (SM Bkgd.), and misidentified muon background (Misid. Bkgd.) for low-mass
selection (first number) and high mass selection (second number in square brackets).

Source Signal (%) SM Bkgd. (%) Misid. Bkgd. (%)
Background estimate from data — — 28 [28]
SM cross section — 9–25 [9–25] —
Jet energy scale 5–12 [1–3] 3 [5] —
Jet energy resolution 6–12 [2–3] 7 [10] —
Event pileup 6–7 [3–6] 7 [4] —
Unclustered energy 2 [1] 3 [1] —
Integrated luminosity 2.6 [2.6] 2.6 [2.6] —
Muon trigger and selection 2 [2] 2 [2] —
b-tagging 1 [1] 1.5 [1] —
PDF 3.5 [3.5] — —
Renormalization/Factorization scales 8–10 [1–6] — —
Signal MC statistics 3–9 [1–4] — —

the input value of each parameter is changed by ±1 standard deviation from its central value.
Energy not clustered in the detector affects the overall missing transverse energy scale resulting
in an uncertainty in the event yield due to the upper cutoff on ET/ . Additional uncertainties in
the heavy Majorana neutrino signal estimate arise from the choice of PDFs and renormalization
and factorization scales used in the ALPGEN MC event generator.

5 Results and discussion
The selections determined by the optimization for each Majorana neutrino mass point are
shown in Table 2 together with the overall signal acceptance. Figure 1 shows the transverse
momentum distributions of the two muons, pT1 and pT2, and the invariant mass m(µ±µ±jj) for
the low-mass region after all selections are applied except for the final optimization require-
ments. The corresponding distributions for the high-mass region are shown in Fig. 2.

After applying all the final optimized selections we obtain the results shown in Table 3. The
expected signal depends on mN and |VµN|2. For mN = 50 GeV and |VµN|2 = 1 × 10−3 the
expected number of events is 226. For mN = 100 GeV and |VµN|2 = 1 × 10−3 the expected
number of events is 4.4, while for mN = 500 GeV and |VµN|2 = 1 it is 6.9.

We see no evidence for a significant excess in data beyond the backgrounds predicted from the
SM and we set 95% confidence level (CL) exclusion limits on the cross section times branching
fraction for pp→ Nµ± → µ±µ±qq′ as a function of mN, using the CLs method [48–50] based on
the event yields shown in Table 3. We use Poisson distributions for the signal and log-normal
distributions for the nuisance parameters. The limits obtained are shown in Fig. 3. We do not
consider the mass range below mN = 40 GeV because of the very low selection efficiency for
the signal in this mass region.

The behavior of the limit around mN = 80 GeV is caused by the fact that as the heavy Majorana
neutrino gets close to the W-boson mass from below or above, the muon produced together
with the N or the muon from the N decay have low pT, respectively.

We also set limits on square of the heavy Majorana neutrino mixing parameter |VµN|2 as a
function of mN, under the assumption |VeN|2 = |VτN|2 = 0. Figure 4 shows the resulting upper
limits on |VµN|2 as a function of mN.
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Figure 1: Kinematic distributions for the low-mass region after all selections are applied except
for the final optimization requirements: leading muon pT (top), trailing muon pT (middle),
and µ±µ±jj invariant mass (bottom). The plots show the data, backgrounds, and two choices
for the heavy Majorana neutrino signal: mN = 40 GeV, |VµN|2 = 5× 10−5 and mN = 80 GeV,
|VµN|2 = 1× 10−3. The backgrounds shown are from misidentified muons and from diboson
(VV), Higgs boson, triboson (VVV), and ttW production.
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Table 2: Minimum thresholds on discriminating variables determined by the optimization and
overall signal acceptance for each Majorana neutrino mass point (mN). As discussed in the text,
the search was divided into low-mass (mN ≤ 80 GeV) and high-mass (mN > 80 GeV) regions,
and different selection criteria were used in the two regions.

mN m(µ±µ±jj) pT1 pT2 Acceptance
(GeV) (GeV) (GeV) (GeV) (%)

40 80 20 15 0.69
50 80 20 15 0.80
60 80 20 15 0.64
70 80 20 15 0.26
80 80 20 15 1.2
90 110 20 15 1.2
100 120 20 15 4.7
125 140 25 20 11
150 160 35 25 13
175 200 45 30 15
200 220 50 35 16
250 270 75 35 17
300 290 100 45 15
350 290 100 45 16
400 290 100 45 15
500 290 100 45 12

6 Summary
A search for heavy Majorana neutrinos in µ±µ±jj events has been performed in proton-proton
collisions at a center-of-mass energy of 8 TeV, using a data set corresponding to an integrated
luminosity of 19.7 fb−1. No excess of events beyond the standard model background prediction
is found. Upper limits at 95% CL are set on |VµN|2, as a function of heavy Majorana neutrino
mass mN, where VµN is the mixing element of the heavy neutrino N with the standard model
muon neutrino.

These are the first direct upper limits on the heavy Majorana neutrino mixing for mN > 200 GeV.
For low mass (mN < 90 GeV) the limits are better or comparable to the L3 [20] and DELPHI [21]
limits, which are derived from Z → ν`N and are restricted to masses below approximately
90 GeV. The limits reported here extend well beyond this mass and are significantly better
than previous LHC limits obtained at a center-of-mass energy of 7 TeV. For mN = 90 GeV
we find |VµN|2 < 0.00470. Furthermore, the direct limits on |VµN| have been extended from
mN ≈ 200 GeV up to mN ≈ 500 GeV. At mN = 200 GeV the limit is |VµN|2 < 0.0123, and at
mN = 500 GeV the limit is |VµN|2 < 0.583.
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Figure 2: Kinematic distributions for the high-mass region after all selections are applied except
for the final optimization requirements: leading muon pT (top), trailing muon pT (middle),
and µ±µ±jj invariant mass (bottom). The plots show the data, backgrounds, and two choices
for the heavy Majorana neutrino signal: mN = 100 GeV, |VµN|2 = 0.001 and mN = 300 GeV,
|VµN|2 = 0.05. The backgrounds shown are from misidentified muons and from diboson (VV),
Higgs boson, triboson (VVV), and ttW production.
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of the heavy Majorana neutrino mass. The long-dashed black curve is the expected upper limit,
with one and two standard-deviation bands shown in dark green and light yellow, respectively.
The solid black curve is the observed upper limit. The region above the exclusion curves is
ruled out at 95% CL.



12 6 Summary

 (GeV)
N

m
50 100 150 200 250 300 350 400 450 500

2

N
µ

V

-5
10

-4
10

-3
10

-2
10

-1
10

1

 ExpectedsCL
σ1± Expected sCL
σ2± Expected sCL

 ObservedsCL
L3
DELPHI
CMS 7 TeV

 (8 TeV)
-1

19.7 fb

CMS

 (GeV)
N

m
50 100 150 200 250

2

N
µ

V

-5
10

-4
10

-3
10

-2
10

-1
10

1

 Expected
s

CL
σ1± Expected 

s
CL

σ2± Expected 
s

CL
 Observed

s
CL
L3
DELPHI
CMS 7 TeV

 (8 TeV)
-1

19.7 fb

CMS

Figure 4: Exclusion region at 95% CL in the square of the heavy Majorana neutrino mixing
parameter as a function of the heavy Majorana neutrino mass: (|VµN|2 vs. mN). The long-
dashed black curve is the expected upper limit, with one and two standard-deviation bands
shown in dark green and light yellow, respectively. The solid black curve is the observed upper
limit. Also shown are the upper limits from other direct searches: L3 [20], DELPHI [21], and
the upper limits from CMS obtained with the 2011 LHC data at

√
s = 7 TeV [22]. The regions

above the exclusion curves are ruled out at 95% CL. The lower panel shows an expanded view
of the region 40 GeV < mN < 250 GeV.



References 13

References
[1] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, Phys. Rev. D 86

(2012) 010001, doi:10.1103/PhysRevD.86.010001. See the review section on
Neutrino Mass, Mixing, and Oscillations, and references therein.

[2] P. Minkowski, “µ→ eγ at a rate of one out of 109 muon decays?”, Phys. Lett. B 67 (1977)
421, doi:10.1016/0370-2693(77)90435-X.

[3] M. Gell-Mann, P. Ramond, and R. Slansky in Supergravity: proceedings of the Supergravity
Workshop at Stony Brook, P. Nieuwenhuizen and D. Freedman, eds., p. 315.
North-Holland, 1979.

[4] T. Yanagida, “Horizontal symmetry and masses of neutrinos”, in Proceedings of the
Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and
A. Sugamoto, eds., p. 95. National Laboratory for High Energy Physics (KEK), 1979.

[5] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Violation”,
Phys. Rev. Lett. 44 (1980) 912, doi:10.1103/PhysRevLett.44.912.

[6] M. Magg and C. Wetterich, “Neutrino mass problem and gauge hierarchy”, Phys. Lett. B
94 (1980) 61, doi:10.1016/0370-2693(80)90825-4.

[7] R. N. Mohapatra and G. Senjanovic, “Neutrino masses and mixings in gauge models
with spontaneous parity violation”, Phys. Rev. D 23 (1981) 165,
doi:10.1103/PhysRevD.23.165.

[8] E. Ma and U. Sarkar, “Neutrino masses and leptogenesis with heavy Higgs triplets”,
Phys. Rev. Lett. 80 (1998) 5716, doi:10.1103/PhysRevLett.80.5716,
arXiv:hep-ph/9802445.

[9] R. Foot, H. Lew, X.-G. He, and G. C. Joshi, “See-saw neutrino masses induced by a triplet
of leptons”, Z. Phys. C 44 (1989) 441, doi:10.1007/BF01415558.

[10] R. N. Mohapatra, “Mechanism for Understanding Small Neutrino Mass in Superstring
Theories”, Phys. Rev. Lett. 56 (1986) 561, doi:10.1103/PhysRevLett.56.561.

[11] R. N. Mohapatra and J. W. F. Valle, “Neutrino mass and baryon number nonconservation
in superstring models”, Phys. Rev. D 34 (1986) 1642,
doi:10.1103/PhysRevD.34.1642.

[12] W.-Y. Keung and G. Senjanovic, “Majorana Neutrinos and the Production of the
Right-Handed Charged Gauge Boson”, Phys. Rev. Lett. 50 (1983) 1427,
doi:10.1103/PhysRevLett.50.1427.

[13] D. A. Dicus, D. D. Karatas, and P. Roy, “Lepton nonconservation at supercollider
energies”, Phys. Rev. D 44 (1991) 2033, doi:10.1103/PhysRevD.44.2033.

[14] A. Datta, M. Guchait, and A. Pilaftsis, “Probing lepton number violation via majorana
neutrinos at hadron supercolliders”, Phys. Rev. D 50 (1994) 3195,
doi:10.1103/PhysRevD.50.3195, arXiv:hep-ph/9311257.

[15] F. M. L. Almeida Jr., Y. A. Coutinho, J. A. Martins Simões, and M. A. B. do Vale, “On a
signature for heavy Majorana neutrinos in hadronic collisions”, Phys. Rev. D 62 (2000)
075004, doi:10.1103/PhysRevD.62.075004, arXiv:hep-ph/0002024.

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1016/0370-2693(80)90825-4
http://dx.doi.org/10.1103/PhysRevD.23.165
http://dx.doi.org/10.1103/PhysRevLett.80.5716
http://www.arXiv.org/abs/hep-ph/9802445
http://www.arXiv.org/abs/hep-ph/9802445
http://dx.doi.org/10.1007/BF01415558
http://dx.doi.org/10.1103/PhysRevLett.56.561
http://dx.doi.org/10.1103/PhysRevD.34.1642
http://dx.doi.org/10.1103/PhysRevLett.50.1427
http://dx.doi.org/10.1103/PhysRevD.44.2033
http://dx.doi.org/10.1103/PhysRevD.50.3195
http://www.arXiv.org/abs/hep-ph/9311257
http://dx.doi.org/10.1103/PhysRevD.62.075004
http://www.arXiv.org/abs/hep-ph/0002024


14 References

[16] O. Panella, M. Cannoni, C. Carimalo, and Y. N. Srivastava, “Signals of heavy Majorana
neutrinos at hadron colliders”, Phys. Rev. D 65 (2002) 035005,
doi:10.1103/PhysRevD.65.035005, arXiv:hep-ph/0107308.

[17] T. Han and B. Zhang, “Signatures for Majorana Neutrinos at Hadron Colliders”, Phys.
Rev. Lett. 97 (2006) 171804, doi:10.1103/PhysRevLett.97.171804,
arXiv:hep-ph/0604064.

[18] F. del Aguila, J. A. Aguilar-Saavedra, and R. Pittau, “Heavy neutrino signals at large
hadron colliders”, JHEP 10 (2007) 047, doi:10.1088/1126-6708/2007/10/047,
arXiv:hep-ph/0703261.

[19] A. Atre, T. Han, S. Pascoli, and B. Zhang, “The search for heavy Majorana neutrinos”,
JHEP 05 (2009) 030, doi:10.1088/1126-6708/2009/05/030, arXiv:0901.3589.

[20] L3 Collaboration, “Search for isosinglet neutral heavy leptons in Z0 decays”, Phys. Lett. B
295 (1992) 371, doi:10.1016/0370-2693(92)91579-X.

[21] DELPHI Collaboration, “Search for neutral heavy leptons produced in Z decays”, Z.
Phys. C 74 (1997) 57, doi:10.1007/s002880050370.

[22] CMS Collaboration, “Search for heavy Majorana neutrinos in µ+µ+[µ−µ−] and
e+e+[e−e−] events in pp collisions at

√
s = 7 TeV”, Phys. Lett. B 717 (2012) 109,

doi:10.1016/j.physletb.2012.09.012, arXiv:1207.6079.

[23] LHCb Collaboration, “Search for Majorana Neutrinos in B− → π+µ−µ− Decays”, Phys.
Rev. Lett. 112 (2014) 131802, doi:10.1103/PhysRevLett.112.131802,
arXiv:1401.5361.
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T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen,
L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva



19

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles,
J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, E. Chapon, C. Charlot, T. Dahms, L. Dobrzynski,
N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, I.N. Naranjo,
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V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle,
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C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,
M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann2, T. Hauth, U. Husemann, I. Katkov5,
A. Kornmayer2, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, A. Nürnberg, G. Quast,
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K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride,
P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev,
E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran,
L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola,
G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov,
T. Kypreos, J.F. Low, K. Matchev, H. Mei, P. Milenovic56, G. Mitselmakher, L. Muniz,
A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
J.R. Adams, T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian,
K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov,



28 A The CMS Collaboration

L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez,
C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
B. Bilki57, W. Clarida, K. Dilsiz, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya58,
A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok50, A. Penzo, R. Rahmat,
S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic,
C. Martin, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek,
M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini,
N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg,
T. Kolberg, Y. Lu, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, K. Bierwagen, W. Busza, I.A. Cali, L. Di Matteo, G. Gomez Ceballos,
M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Paus, D. Ralph,
C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch,
M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, S. Nourbakhsh, R. Rusack,
A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller,
D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Massironi, D.M. Morse, D. Nash,
T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev,
K. Sung, M. Velasco, S. Won



29

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams,
K. Lannon, S. Lynch, N. Marinelli, Y. Musienko30, T. Pearson, M. Planer, R. Ruchti, G. Smith,
N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes,
K. Kotov, T.Y. Ling, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva,
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8: Also at Université Libre de Bruxelles, Bruxelles, Belgium
9: Also at Joint Institute for Nuclear Research, Dubna, Russia
10: Also at Suez University, Suez, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
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